天空彩票app下载app - 天空彩票app代理
天空彩票app2024-04-17

二十大代表风采丨“燃灯校长”张桂梅:为国育才 为孩子们点亮梦想******

  中新网丽江10月8日电 题:“燃灯校长”张桂梅:为国育才 为孩子们点亮梦想

  中新网记者 韩帅南

  十月,地处滇西高原的丽江夜晚已吹起瑟瑟秋风。晚上9点,丽江华坪女子高级中学校长张桂梅走进每一个班级巡课。经过走廊时,她细心检查每所卫生间,将亮着的灯关闭。“我时常叮嘱孩子们要节约,但这些灯不需要她们来关,让她们安心读书。”节俭、时刻牵挂着山区的孩子们,这已是她多年的习惯。

图为张桂梅(右)正在接受采访。 韩帅南 摄

图为张桂梅(右)正在接受采访。 韩帅南 摄

  1996年,张桂梅主动申请来到偏远的华坪县任教。在教学和家访的过程中,她看到了山区孩子对知识的渴望,同时也发现不少山区女孩因为贫困而辍学。这时起,张桂梅就有了一个梦想——创办一所免费女子高中,用教育阻断贫困代际传递。

  随后的几年中,她为了筹建学校省吃俭用,四处奔波。“但我发现只凭自己的力量是建不起这所学校的。”张桂梅告诉记者。

  转机出现在2007年,在党的十七大上,张桂梅作为党代表勇敢说出了自己的梦想。次年,在各级党委、政府和社会各界支持下,全国第一所公办免费女子高中——丽江华坪女子高级中学(简称“华坪女高”)正式成立。

图为张桂梅正在巡课。 韩帅南 摄图为张桂梅正在巡课。 韩帅南 摄

  华坪女高建校初期,条件设施简陋,教师经验不足,学生基础较差。面对沉重的教学任务,多位教师选择了离职。

  “我发现剩下的8位教师中有6位是党员,于是我为了鼓舞他们,就带着他们重温入党誓词,唱红色歌曲。”张桂梅坚信,只要有党组织和党员在,就没有克服不了的困难。这样的气氛也逐渐带动了学生,学生也会跟着一起唱红歌,学习更充满动力。

  张桂梅经过思考,提出了“党建统领教学,革命传统立校,红色文化育人”的教育理念。此后,她带领师生唱红色歌曲、忆红色历史、塑红色课堂……在华坪女高,学生的作息被控制在分秒,学习的时间被利用到极致。

  “女高招收的学生大多基础比较差,我们得靠着这股拼劲儿,才能实现走出大山的梦想。”张桂梅称。

  每天早上5点,张桂梅会用一个小喇叭“吼”学生们起床;深夜,在陪伴学生们自习结束后,她才入睡。十余年来,她被肿瘤、肺纤维化、小脑萎缩等多种疾病缠身,但依然坚持用自己的方式把2000余名大山里的女孩送进全国各地的大学。

  “华坪女高的教育方式曾受到外界质疑,但事实会说话。”张桂梅说,该校的大部分学生在进入大学后成绩依然优秀,有不少学生在毕业后选择了人民警察、医护、教师等岗位,以自己的方式为建设祖国出一份力。

  张桂梅举例,华坪女高的一位毕业生在从军多年后返校看望学妹。分别时,在校学生说,“学姐你放心走,将来我们也会参军,报效祖国,守护一方平安。”讲到这里,张桂梅红了眼眶,“我在帮助这些学生的同时,她们也在不断给予我力量。”

  张桂梅说,华坪女高培养出来的学生勤奋刻苦,有理想,有信念,知道自己是为了什么而读书。

  多年来,张桂梅坚持无私奉献,像一束希望之光,照亮山区孩子们的追梦人生。她被尊称为“燃灯校长”,也收获了“全国脱贫攻坚楷模”荣誉称号、“七一勋章”、全国道德模范荣誉称号等荣誉。但张桂梅认为,这些荣誉不属于她一个人,属于共同付出的所有党员和群众。

  “我的身份不会改变,会一直坚守初心,继续守护这些山里的孩子,让她们飞出大山,再将希望之光带给更多人。”张桂梅说。

  2022年,张桂梅再次当选党的二十大代表。“可以近距离聆听党中央的声音,让我感到无上光荣;同时,我要把二十大的声音带回给山里的党员,一起完成好党的任务,这又是一份沉甸甸的责任。”

  “只要我还有一口气在,我就会为党育人,为国育才,让学生们成为合格的社会主义接班人。”张桂梅坚定地说。(完)

  • 天空彩票app下载app

    把科技穿在身上,既有温度也有风度******

      仿造鹅绒、碳纳米管加热膜、人体红外反射材料……

      把科技穿在身上,既有温度也有风度

      在刚刚过去的春节假期,受寒潮天气影响,全国部分地区气温大幅下降,处于“速冻”模式中。

      来自中央气象台的信息,节日期间,我国东北、华北部分地区,气温创今冬新低,黑龙江省漠河市最低温度甚至跌至零下53摄氏度。

      为了防寒,连不少“要风度、不要温度”的年轻人,都穿上了厚实的外套。

      不过,想御寒保暖,不必非要把自己裹成“粽子”。如今,用在冬衣上的“黑科技”能够帮助人们“既有风度、也有温度”。

      “人体热量的散失是由于热传递造成的,热传递有3种基本方式:传导、对流和辐射。”天津工业大学纺织科学与工程学院高级工程师、博士生导师夏兆鹏在接受科技日报记者采访时介绍道,为了达到保温效果,在设计上冬季防寒衣物要尽一切可能减少热量经由这3种途径流失,冬季保暖材料及保暖服装也都是围绕着这一原理进行研发和设计的。

      仿造鹅绒:

      即使被浸湿也能实现保暖效果

      “冬天人体与外部低温环境间存在巨大温差,这就造成热传导,即热量会从温度高的地方传导到温度低的地方。如果在衣服中加入低导热系数的高蓬松保暖填充物,就可以阻止热传导,进而减少人体热量散失,达到保暖的目的。”夏兆鹏介绍道,这类保暖填充物主要起阻隔热传导的作用,目前比较常见的天然材料有棉、毛、羽绒等,比较常见的化学纤维材料有中空涤纶、喷胶棉等。

      与传统保暖填充材料相比,近年来出现了一些新型保暖填充材料,其中具有代表性的就是仿鹅绒结构高保暖絮片。这种填充材料不仅保暖性强、轻便,而且在潮湿的环境下依旧可以持续保暖。在2022年北京冬季奥运会上,中国运动员的防寒服中就用这种仿鹅绒结构高保暖絮片作为填充材料,其在完全浸湿的条件下仍然能够达到98%的保暖率。

      “仿鹅绒结构高保暖絮片的主要成分是与鹅绒纤维直径长度相差不大的仿造鹅绒,同时混入远红外涤纶和热熔涤纶。”夏兆鹏解释,其中仿造鹅绒以中空涤纶和Y形涤纶为主体,这两种涤纶可以最大限度地储存静止空气,而静止空气可以较好地保存热量。此外,即使是在被水浸湿的情况下,中空涤纶和Y形涤纶依然可以储存一定的静止空气。

      仿鹅绒结构高保暖絮片能够克服天然鹅绒显臃肿、有异味、易跑绒和价格高等缺点,同时具有超轻、超薄、湿态保暖、高蓬松度等特点,而且洗涤后回弹性好、不缩水、保暖率不降低。

      碳纳米管加热膜:

      通电即发热,温度可调控

      采用加热材料制作的电热服是国内外研究最多的冬季服装之一。

      “常见的加热材料有镍铬加热丝、复合加热丝、碳纤维加热丝、碳纳米管加热膜等,这些材料被内置于衣服中制成电热服,当电热服连上充电设备后,电流经过衣服内部的加热材料就会产生热量,仿佛把电热毯披在身上。”夏兆鹏介绍,除此之外,该类衣服还内置了传感器,通过蓝牙即可实现对衣服的智能控温,用户只需要下载一个App,就可以用手机随时调整衣服的温度。

      其中,碳纳米管加热膜作为控温加热系统中的重要元件,具有非常好的应用前景。“碳纳米管加热膜可以反复水洗,耐弯折次数达到10万次以上,而且薄膜厚度约为几十微米,具有非常好的柔性,发热效率大于65%。”夏兆鹏补充道。

      除此之外,价格相对便宜的金属丝线性加热元件,如镍铬加热丝、复合加热丝等,也是加热“能手”。

      “金属丝类材料具有高导电性、良好的电加热性能,且具有传感、电磁屏蔽等性能。以复合加热丝为例,其是在金属丝中添加了钼,既减少了金属的氧化,同时还可以提高金属电加热元件的耐用性。”夏兆鹏介绍道,将含有钼的金属丝,通过冷拉伸工艺变成微米级金属微丝,使其由金属丝转变为纤维。该纤维可以与聚酯纱线混纺制备成纱线,用其制作出的织物具有导电性。

      相较普通导电织物,这种导电织物的柔性及舒适性都有所提升。“其柔性及形态与传统纤维及纱线十分接近,舒适性也得到提升。”夏兆鹏表示,不过,这类制衣材料仍然存在不耐长时间水洗、比较重等缺点。

      人体红外反射材料:

      人体热辐射反射率可达60%

      红外热辐射是人体热量损失的另一种形式,传统纺织品的红外辐射率高、热量损失快,有研究指出棉花不可避免地会以中红外形式辐射出人体50%以上的热量。而人体红外反射材料则可以通过将人体发出的红外波反射回人体的方式减少红外热辐射损失,以达到保暖的效果。

      “人体红外反射材料多数由金属颗粒构成,这些颗粒以一种微结构形式存在,将此材料附在织物上,便形成了红外波反射层。该反射层可以把人体辐射的大部分红外波都反射回来,从而达到保温效果。”夏兆鹏补充道。

      “人体红外反射材料通常被用来制作冬装外衣的内衬,一般其人体热辐射反射率可以达到60%,提高服装防寒保暖效果比较明显。”夏兆鹏表示,不过,如果长时间处在超低温环境下,由于人体辐射的热量有限,因此该材料或无法达到理想的保暖效果。

      聚四氟乙烯微孔膜:

      低温环境下既透气又防水

      冬季户外可能会出现下雨、降雪、霜冻等天气,通过高密防水层阻挡雨、雪、霜的侵入,可避免因衣物内层保暖材料被浸湿而导致保暖系数降低、保暖效率下降甚至失效。

      “防水材料是在高密织物外面附上一层聚四氟乙烯微孔膜、水性聚氨酯膜或者聚氨酯膜。”夏兆鹏解释道,聚四氟乙烯微孔膜每平方厘米有十多亿个孔,在低温环境下,这些孔洞的开孔率可以达到80%。该孔的直径比水蒸气分子的直径大700倍,因此人体产生的汗蒸汽可以从中通过,从而保持衣服的透气性。聚四氟乙烯微孔膜上孔的直径比一般水的直径小很多倍,因此外面的液态水无法通过,从而达到了防水的目的。(科技日报 记者 陈 曦)

    中国网客户端

    国家重点新闻网站,9语种权威发布

    天空彩票app地图